z-logo
open-access-imgOpen Access
Some linear differential equations generated by matrices
Author(s) -
Christopher S. Withers,
Saralees Nadarajah
Publication year - 2022
Publication title -
aims mathematics
Language(s) - English
Resource type - Journals
ISSN - 2473-6988
DOI - 10.3934/math.2022533
Subject(s) - combinatorics , mathematics
Given matrices $ N\in C^{s\times s} $ and $ S_0, \ldots, S_q\in C^{s\times s} $, we solve the linear differential equation \begin{document}$ \begin{align*} \sum\limits_{n = 0}^q T_n(t)\ (d/dt)^n f(t) = g(t), \end{align*} $\end{document} where $ t\in R $, $ T_n(t) = e^{tN}S_ne^{-tN} $, and $ f(t):R\rightarrow C^s $, using the roots of $ d(\nu) = \det\ D(\nu) $, where \begin{document}$ \begin{align*} D(\nu) = \sum\limits_{n = 0}^q S_n\ \left(\nu I_r+N\right)^n. \end{align*} $\end{document} For example, \begin{document}$ \begin{align*} N = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \end{align*} $\end{document} implies \begin{document}$ \begin{align*} e^{tN} = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}, \end{align*} $\end{document} so that $ T_n(t) $ are periodic, giving an explicit solution to a form of Floquet's theorem.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom