z-logo
open-access-imgOpen Access
Well-posedness of initial value problem of Hirota-Satsuma system in low regularity Sobolev space
Author(s) -
Xiangqing Zhao,
Zhi-Wei Lv
Publication year - 2022
Publication title -
aims mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.329
H-Index - 15
ISSN - 2473-6988
DOI - 10.3934/math.2022374
Subject(s) - sobolev space , initial value problem , combinatorics , mathematics , space (punctuation) , physics , mathematical physics , mathematical analysis , philosophy , linguistics
In this paper, we study the initial value problem of Hirota-Satsuma system: \begin{document}$ \begin{equation} \notag \left\{ \begin{array}{ll} u_t-\alpha(u_{xxx}+6uu_x) = 2\beta vv_x, & \ x\in {\mathbb{R}}, \ t\ge 0, \\ v_t+v_{xxx}+3uv_x = 0, & x\in {\mathbb{R}}, \ t\ge 0, \\ u(0, x) = \phi(x), \; \; v(0, x) = \psi(x), & x\in {\mathbb{R}}, \end{array} \right. \end{equation} $\end{document} where $ \alpha\in {\mathbb{R}} $, $ \beta\in {\mathbb{R}} $; $ u = u(x, t) $, $ v = v(x, t) $ are real functions. Aided by Fourier restrict norm method, we show that $ \forall s > -\frac 18 $ initial value problem (0.1) is locally well-posed in $ H^s({\mathbb{R}})\times H^{s+1}({\mathbb{R}}) $ which improved the results of [ 7 ] .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom