Positive solutions for a class of supercritical quasilinear Schrödinger equations
Author(s) -
Yin Deng,
Xiaojing Zhang,
Gao Jia
Publication year - 2022
Publication title -
aims mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.329
H-Index - 15
ISSN - 2473-6988
DOI - 10.3934/math.2022366
Subject(s) - combinatorics , lambda , neighbourhood (mathematics) , mathematics , physics , supercritical fluid , mathematical physics , mathematical analysis , quantum mechanics , thermodynamics
This paper deals with a class of supercritical quasilinear Schrödinger equations \begin{document}$ -\Delta u+V(x)u+\kappa\Delta(\sqrt{1+{u}^{2}})\frac{u}{2\sqrt{1+{u}^{2}}} = \lambda f(u), \; x\in \mathbb{R}^{N}, $\end{document} where $ \kappa\geq2, \; N\geq3, \; \lambda > 0. $ We suppose that the nonlinearity $ f(t):\mathbb{R}\rightarrow \mathbb{R} $ is continuous and only superlinear in a neighbourhood of $ t = 0. $ By using a change of variable and the variational methods, we obtain the existence of positive solutions for the above problem.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom