z-logo
open-access-imgOpen Access
Existence of stable standing waves for the nonlinear Schrödinger equation with attractive inverse-power potentials
Author(s) -
Yali Meng
Publication year - 2022
Publication title -
aims mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.329
H-Index - 15
ISSN - 2473-6988
DOI - 10.3934/math.2022332
Subject(s) - inverse , mathematics , physics , mathematical physics , combinatorics , geometry
In this paper, we consider the following nonlinear Schrödinger equation with attractive inverse-power potentials \begin{document}$ i\partial_t\psi+\Delta\psi+\gamma|x|^{-\sigma}\psi+|\psi|^\alpha\psi = 0, \; \; \; (t, x)\in\mathbb{R}\times\mathbb{R}^N, $\end{document} where $ N\geq3 $, $ 0 < \gamma < \infty $, $ 0 < \sigma < 2 $ and $ \frac{4}{N} < \alpha < \frac{4}{N-2} $. By using the concentration compactness principle and considering a local minimization problem, we prove that there exists a $ \gamma_0 > 0 $ sufficiently small such that $ 0 < \gamma < \gamma_0 $ and for any $ a\in(0, a_0) $, there exist stable standing waves for the problem in the $ L^2 $-supercritical case. Our results are complement to the result of Li-Zhao in [ 23 ] .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom