z-logo
open-access-imgOpen Access
Hankel determinants of a Sturmian sequence
Author(s) -
Haocong Song,
Wen Wu
Publication year - 2021
Publication title -
aims mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.329
H-Index - 15
ISSN - 2473-6988
DOI - 10.3934/math.2022235
Subject(s) - mathematics , combinatorics , alphabet , partition (number theory) , hankel matrix , sequence (biology) , integer (computer science) , discrete mathematics , mathematical analysis , chemistry , computer science , philosophy , linguistics , biochemistry , programming language
Let $ \tau $ be the substitution $ 1\to 101 $ and $ 0\to 1 $ on the alphabet $ \{0, 1\} $. The fixed point of $ \tau $ obtained starting from 1, denoted by $ {\bf{s}} $, is a Sturmian sequence. We first give a characterization of $ {\bf{s}} $ using $ f $-representation. Then we show that the distribution of zeros in the determinants induces a partition of integer lattices in the first quadrant. Combining those properties, we give the explicit values of the Hankel determinants $ H_{m, n} $ of $ {\bf{s}} $ for all $ m\ge 0 $ and $ n\ge 1 $.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom