z-logo
open-access-imgOpen Access
A regularity criterion for liquid crystal flows in terms of the component of velocity and the horizontal derivative components of orientation field
Author(s) -
Qiang Li,
Baoquan Yuan
Publication year - 2021
Publication title -
aims mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.329
H-Index - 15
ISSN - 2473-6988
DOI - 10.3934/math.2022231
Subject(s) - nabla symbol , omega , orientation (vector space) , component (thermodynamics) , field (mathematics) , physics , vorticity , liquid crystal , crystal (programming language) , derivative (finance) , combinatorics , mathematics , geometry , mathematical physics , mathematical analysis , pure mathematics , condensed matter physics , vortex , quantum mechanics , thermodynamics , computer science , financial economics , economics , programming language
In this paper, we establish a regularity criterion for the 3D nematic liquid crystal flows. More precisely, we prove that the local smooth solution $ (u, d) $ is regular provided that velocity component $ u_{3} $, vorticity component $ \omega_{3} $ and the horizontal derivative components of the orientation field $ \nabla_{h}d $ satisfy \begin{document}$ \begin{eqnarray*} \int_{0}^{T}|| u_{3}||_{L^{p}}^{\frac{2p}{p-3}}+||\omega_{3}||_{L^{q}}^{\frac{2q}{2q-3}}+||\nabla_{h} d||_{L^{a}}^{\frac{2a}{a-3}} \mbox{d} t<\infty,\nonumber \\ with\ \ 3< p\leq\infty,\ \frac{3}{2}< q\leq\infty,\ 3< a\leq\infty. \end{eqnarray*} $\end{document}

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom