
Certain class of bi-univalent functions defined by quantum calculus operator associated with Faber polynomial
Author(s) -
Sheza M. El-Deeb,
G. Murugusundaramoorthy,
K. Vijaya,
Alhanouf Alburaikan
Publication year - 2022
Publication title -
aims mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.329
H-Index - 15
ISSN - 2473-6988
DOI - 10.3934/math.2022165
Subject(s) - class (philosophy) , mathematics , polynomial , operator (biology) , convolution (computer science) , pure mathematics , univalent function , taylor series , combinatorics , discrete mathematics , analytic function , mathematical analysis , computer science , biochemistry , chemistry , repressor , artificial intelligence , machine learning , transcription factor , artificial neural network , gene
In this paper, we introduce a new class of bi-univalent functions defined in the open unit disc and connected with a $ q $-convolution. We find estimates for the general Taylor-Maclaurin coefficients of the functions in this class by using Faber polynomial expansions, and we obtain an estimation for Fekete-Szegö problem for this class.