
Faber polynomial coefficients estimates for certain subclasses of $ q $-Mittag-Leffler-Type analytic and bi-univalent functions
Author(s) -
Zeya Jia,
Nazar Khan,
Shahid Khan,
Bilal Khan
Publication year - 2022
Publication title -
aims mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.329
H-Index - 15
ISSN - 2473-6988
DOI - 10.3934/math.2022141
Subject(s) - mathematics , unit disk , polynomial , differential operator , function (biology) , type (biology) , combinatorics , univalent function , operator (biology) , analytic function , pure mathematics , mathematical analysis , chemistry , ecology , biochemistry , repressor , evolutionary biology , gene , transcription factor , biology
In this paper, we introduce the $ q $-analogus of generalized differential operator involving $ q $-Mittag-Leffler function in open unit disk \begin{document}$ \begin{equation*} E = \left \{ z:z\in \mathbb{C\ \ }\text{ and} \ \ \left \vert z\right \vert <1\right \} \end{equation*} $\end{document} and define new subclass of analytic and bi-univalent functions. By applying the Faber polynomial expansion method, we then determined general coefficient bounds $ |a_{n}| $, for $ n\geq 3 $. We also highlight some known consequences of our main results.