z-logo
open-access-imgOpen Access
On a class of bent, near-bent, and 2-plateaued functions over finite fields of odd characteristic
Author(s) -
Samed Bajrić
Publication year - 2021
Publication title -
aims mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.329
H-Index - 15
ISSN - 2473-6988
DOI - 10.3934/math.2022113
Subject(s) - bent molecular geometry , lambda , prime (order theory) , combinatorics , finite field , bent function , class (philosophy) , mathematics , fourier transform , physics , boolean function , mathematical analysis , quantum mechanics , computer science , chemistry , organic chemistry , artificial intelligence
The main purpose of this paper is to study a class of the $ p $-ary functions $ f_{\lambda, u, v}(x) = Tr_1^k(\lambda x^{p^k+1})+Tr^n_1(ux)Tr_1^n(vx) $ for any odd prime $ p $ and $ n = 2k, \lambda\in GF(p^k)^*, u, v\in GF(p^n)^*. $ With the help of Fourier transforms, we are able to subdivide the class of all $ f_{\lambda, u, v} $ into sublcasses of bent, near-bent and 2-plateaued functions. It is shown that the choice of $ \lambda, u $ and $ v $, ensuring that $ f $ is bent, 2-plateaued or near-bent, is directly related to finding the subset $ A\subset GF(p)^3 $. The efficient method for defining the set $ A\subset GF(p)^3 $ is described in detail.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom