z-logo
open-access-imgOpen Access
Semilinear viscous Moore-Gibson-Thompson equation with the derivative-type nonlinearity: Global existence versus blow-up
Author(s) -
Jincheng Shi,
Yan Zhang,
Zihan Cai,
Yan Liu
Publication year - 2021
Publication title -
aims mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.329
H-Index - 15
ISSN - 2473-6988
DOI - 10.3934/math.2022015
Subject(s) - mathematics , type (biology) , derivative (finance) , nonlinear system , mathematical analysis , mathematical physics , physics , quantum mechanics , ecology , financial economics , economics , biology
In this paper, we study global existence and blow-up of solutions to the viscous Moore-Gibson-Thompson (MGT) equation with the nonlinearity of derivative-type $ |u_t|^p $. We demonstrate global existence of small data solutions if $ p > 1+4/n $ ($ n\leq 6 $) or $ p\geq 2-2/n $ ($ n\geq 7 $), and blow-up of nontrivial weak solutions if $ 1 < p\leq 1+1/n $. Deeply, we provide estimates of solutions to the nonlinear problem. These results complete the recent works for semilinear MGT equations by [ 4 ] .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom