z-logo
open-access-imgOpen Access
On the number of unit solutions of cubic congruence modulo $ n $
Author(s) -
Junyong Zhao
Publication year - 2021
Publication title -
aims mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.329
H-Index - 15
ISSN - 2473-6988
DOI - 10.3934/math.2021784
Subject(s) - congruence (geometry) , combinatorics , integer (computer science) , mathematics , modulo , geometry , computer science , programming language
For any positive integer $ n $, let $ \mathbb Z_n: = \mathbb Z/n\mathbb Z = \{0, \ldots, n-1\} $ be the ring of residue classes module $ n $, and let $ \mathbb{Z}_n^{\times}: = \{x\in \mathbb Z_n|\gcd(x, n) = 1\} $. In 1926, for any fixed $ c\in\mathbb Z_n $, A. Brauer studied the linear congruence $ x_1+\cdots+x_m\equiv c\pmod n $ with $ x_1, \ldots, x_m\in\mathbb{Z}_n^{\times} $ and gave a formula of its number of incongruent solutions. Recently, Taki Eldin extended A. Brauer's result to the quadratic case. In this paper, for any positive integer $ n $, we give an explicit formula for the number of incongruent solutions of the following cubic congruence \begin{document}$ x_1^3+\cdots +x_m^3\equiv 0\pmod n\ \ \ {\rm with} \ x_1, \ldots, x_m \in \mathbb{Z}_n^{\times}. $\end{document}

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom