
Edge-fault-tolerant strong Menger edge connectivity of bubble-sort graphs
Author(s) -
Yanling Wang,
Shiying Wang
Publication year - 2021
Publication title -
aims mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.329
H-Index - 15
ISSN - 2473-6988
DOI - 10.3934/math.2021763
Subject(s) - correctness , enhanced data rates for gsm evolution , sort , vertex (graph theory) , combinatorics , graph , connectivity , mathematics , interconnection , computer science , fault tolerance , discrete mathematics , algorithm , distributed computing , computer network , arithmetic , telecommunications
This paper studies the edge-fault-tolerant strong Menger edge connectivity of $ n $-dimensional bubble-sort graph $ B_{n} $. We give the values of faulty edges that $ B_{n} $ can tolerant when $ B_{n} $ is strongly Menger edge connected under two conditions. When there are $ (n-3) $ faulty edges removed from $ B_{n} $, the $ B_{n} $ network is still working and it is strongly Menger edge connected. When the condition of any vertex in $ B_{n} $ has at least two neighbors is imposed, the number of faulty edges that can removed from $ B_{n} $ is $ (2n-6) $ when $ B_{n} $ is also strongly Menger edge connected. And two special cases are used to illustrate the correctness of the conclusions. The conclusions can help improve the reliability of the interconnection networks.