z-logo
open-access-imgOpen Access
Generalizations of strongly hollow ideals and a corresponding topology
Author(s) -
Seçil Çeken,
Cem Yüksel
Publication year - 2021
Publication title -
aims mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.329
H-Index - 15
ISSN - 2473-6988
DOI - 10.3934/math.2021751
Subject(s) - commutative property , mathematics , noetherian , noetherian ring , topology (electrical circuits) , commutative ring , space (punctuation) , pure mathematics , ring (chemistry) , spectral space , discrete mathematics , combinatorics , algebra over a field , computer science , chemistry , organic chemistry , operating system
In this paper, we introduce and study the notions of $ M $-strongly hollow and $ M $-PS-hollow ideals where $ M $ is a module over a commutative ring $ R $. These notions are generalizations of strongly hollow ideals. We investigate some properties and characterizations of $ M $-strongly hollow ($ M $-PS-hollow) ideals. Then we define and study a topology on the set of all $ M $-PS-hollow ideals of a commutative ring $ R $. We investigate when this topological space is irreducible, Noetherian, $ T_{0} $, $ T_{1} $ and spectral space.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom