z-logo
open-access-imgOpen Access
Automorphism group of the commuting graph of $ 2\times 2 $ matrix ring over $ \mathbb{Z}_{p^{s}} $
Author(s) -
Hengbin Zhang
Publication year - 2021
Publication title -
aims mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.329
H-Index - 15
ISSN - 2473-6988
DOI - 10.3934/math.2021729
Subject(s) - combinatorics , mathematics , graph , modulo , automorphism , ring (chemistry) , automorphism group , discrete mathematics , chemistry , organic chemistry
Let $ R $ be a ring with identity. The commuting graph of $ R $ is the graph associated to $ R $ whose vertices are non-central elements in $ R $, and distinct vertices $ A $ and $ B $ are adjacent if and only if $ AB = BA $. In this paper, we completely determine the automorphism group of the commuting graph of $ 2\times 2 $ matrix ring over $ \mathbb{Z}_{p^{s}} $, where $ \mathbb{Z}_{p^{s}} $ is the ring of integers modulo $ p^{s} $, $ p $ is a prime and $ s $ is a positive integer.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom