
Automorphism group of the commuting graph of $ 2\times 2 $ matrix ring over $ \mathbb{Z}_{p^{s}} $
Author(s) -
Hengbin Zhang
Publication year - 2021
Publication title -
aims mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.329
H-Index - 15
ISSN - 2473-6988
DOI - 10.3934/math.2021729
Subject(s) - combinatorics , graph , mathematics , modulo , automorphism , ring (chemistry) , automorphism group , discrete mathematics , chemistry , organic chemistry
Let $ R $ be a ring with identity. The commuting graph of $ R $ is the graph associated to $ R $ whose vertices are non-central elements in $ R $, and distinct vertices $ A $ and $ B $ are adjacent if and only if $ AB = BA $. In this paper, we completely determine the automorphism group of the commuting graph of $ 2\times 2 $ matrix ring over $ \mathbb{Z}_{p^{s}} $, where $ \mathbb{Z}_{p^{s}} $ is the ring of integers modulo $ p^{s} $, $ p $ is a prime and $ s $ is a positive integer.