z-logo
open-access-imgOpen Access
The limit of reciprocal sum of some subsequential Fibonacci numbers
Author(s) -
Ho-Hyeong Lee,
Jong-Do Park
Publication year - 2021
Publication title -
aims mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.329
H-Index - 15
ISSN - 2473-6988
DOI - 10.3934/math.2021716
Subject(s) - fibonacci number , combinatorics , mathematics , limit (mathematics) , reciprocal , mathematical analysis , philosophy , linguistics
This paper deals with the sum of reciprocal Fibonacci numbers. Let $ f_0 = 0 $, $ f_1 = 1 $ and $ f_{n+1} = f_n+f_{n-1} $ for any $ n\in\mathbb{N} $. In this paper, we prove new estimates on $ \sum\limits^\infty_{k = n}\frac{1}{f_{mk-\ell}} $, where $ m\in\mathbb{N} $ and $ 0\leq\ell\leq m-1 $. As a consequence of some inequalities, we prove \begin{document}$ \lim\limits_{n\rightarrow \infty}\left\{\left(\sum\limits^\infty_{k = n}\frac{1}{f_{mk-\ell}} \right)^{-1} -(f_{mn-\ell}-f_{m(n-1)-\ell})\right\} = 0. $\end{document} And we also compute the explicit value of $ \left\lfloor\left(\sum\limits^\infty_{k = n}\frac{1}{f_{mk-\ell}}\right)^{-1}\right\rfloor $. The interesting observation is that the value depends on $ m(n+1)+\ell $.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom