z-logo
open-access-imgOpen Access
On $ \Phi $-powerful submodules and $ \mathrm{\Phi} $-strongly prime submodules
Author(s) -
Waheed Ahmad Khan,
Kiran Farid,
Abdelghani Taouti,
ETS-Maths
Publication year - 2021
Publication title -
aims mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.329
H-Index - 15
ISSN - 2473-6988
DOI - 10.3934/math.2021674
Subject(s) - prime (order theory) , physics , commutative ring , combinatorics , commutative property , mathematics , discrete mathematics
Let $ R $ be a commutative ring with identity and $ N $ be a submodule of an $ R $-module $ M $. We say a nonnil submodule $ N $ of an $ R $-module $ M $ is a $ \mathrm{\Phi} $-powerful (resp., $ \mathrm{\Phi} $-strongly prime) submodule, if $ \mathrm{\Phi}(N) $ is a powerful (resp., strongly prime) submodule of a module $ \mathrm{\Phi}(M) $. We show that a nonnil prime submodule $ N $ of an $ R $-module $ M $ is a $ \mathrm{\Phi} $-powerful submodule if and only if it is a $ \mathrm{\Phi} $-strongly prime submodule. Similarly, if every prime submodule of an $ R $-module $ M $ is a $ \mathrm{\Phi} $-strongly prime, then we call it a $ \mathrm{\Phi} $-pseudo-valuation module ($ \mathrm{\Phi} $-PVM). We also prove that a faithful multiplication $ R $-module $ M $ is $ \mathrm{\Phi} $-PVM if and only if some maximal nonnil submodules of $ M $ are $ \mathrm{\Phi} $-powerful. In this perspective, we analyze that $ M $ is $ \mathrm{\Phi} $-PVM if and only if $ R $ is a PVD. In due course, we provide some characterizations of these submodules along with their relationships under certain conditions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here