z-logo
open-access-imgOpen Access
Digital products with $ PN_k $-adjacencies and the almost fixed point property in $ DTC_k^\blacktriangle $
Author(s) -
Jeong Min Kang,
Sang-Eon Han,
Sik Lee
Publication year - 2021
Publication title -
aims mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.329
H-Index - 15
ISSN - 2473-6988
DOI - 10.3934/math.2021670
Subject(s) - isomorphism (crystallography) , mathematics , combinatorics , adjacency list , adjacency matrix , discrete mathematics , crystallography , chemistry , crystal structure , graph
Given two digital images $ (X_i, k_i), i \in \{1, 2\} $, first of all we establish a new $ PN_k $-adjacency relation in a digital product $ X_1 \times X_2 $ to obtain a relation set $ (X_1 \times X_2, PN_k) $, where the term $ ''$$ PN $" means $ ''$pseudo-normal". Indeed, a $ PN $-$ k $-adjacency is softer or broader than a normal $ k $-adjacency. Next, the present paper initially develops both $ PN $-$ k $-continuity and $ PN $-$ k $-isomorphism. Furthermore, it proves that these new concepts, the $ PN $-$ k $-continuity and $ PN $-$ k $-isomorphism, need not be equal to the typical $ k $-continuity and a $ k $-isomorphism, respectively. Precisely, we prove that none of the typical $ k $-continuity ( resp. typical $ k $-isomorphism) and the $ PN $-$ k $-continuity ( resp. $ PN $-$ k $-isomorphism) implies the other. Then we prove that for each $ i \in \{1, 2\} $, the typical projection map $ P_i: X_1 \times X_2 \to X_i $ preserves a $ PN_k $-adjacency relation in $ X_1 \times X_2 $ to the $ k_i $-adjacency relation in $ (X_i, k_i) $. In particular, using a $ PN $-$ k $-isomorphism, we can classify digital products with $ PN_k $-adjacencies. Furthermore, in the category of digital products with $ PN_k $-adjacencies and $ PN $-$ k $-continuous maps between two digital products with $ PN_k $-adjacencies, denoted by $ DTC_k^\blacktriangle $, we finally study the (almost) fixed point property of $ (X_1 \times X_2, PN_k) $.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom