z-logo
open-access-imgOpen Access
On the nonlinear system of fourth-order beam equations with integral boundary conditions
Author(s) -
Ammar Khanfer,
Lazhar Bougoffa
Publication year - 2021
Publication title -
aims mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.329
H-Index - 15
ISSN - 2473-6988
DOI - 10.3934/math.2021664
Subject(s) - order (exchange) , physics , economics , finance
The purpose of this paper is to establish an existence theorem for a system of nonlinear fourth-order differential equations with two parameters \begin{document}$ \begin{eqnarray*} \left\{ \begin{array}{rcl} u^{(4)}+A(x)u& = &\lambda f(x, u, v, u'', v''), \ 0<x<1, \\ v^{(4)}+B(x)v& = &\mu g(x, u, v, u'', v''), \ 0<x<1 \end{array} \right. \end{eqnarray*} $\end{document} subject to the coupled integral boundary conditions: \begin{document}$ \begin{eqnarray*} \left\{ \begin{array}{rcl} u(0) = u'(1) = u'''(1) = 0, \ u''(0)& = & \int_{0}^{1}p(x)v''(x)dx, \\ v(0) = v'(1) = v'''(1) = 0, \ v''(0)& = & \int_{0}^{1}q(x)u''(x)dx, \end{array} \right. \end{eqnarray*} $\end{document} where $ A, \ B \in C[0, 1], $ $ p, q\in L^{1}[0, 1], $ $ \lambda > 0, \mu > 0 $ are two parameters and $ f, g: [0, 1]\times[0, \infty)\times[0, \infty)\times(-\infty, 0)\times(-\infty, 0) \rightarrow \mathbb{R} $ are two continuous functions satisfy the growth conditions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here