
Sensitivity for topologically double ergodic dynamical systems
Author(s) -
Risong Li,
Tianxiu Lu,
Xiaofang Yang,
Yongxi Jiang,
Bridge -destruction Detecting
Publication year - 2021
Publication title -
aims mathematics
Language(s) - English
Resource type - Journals
ISSN - 2473-6988
DOI - 10.3934/math.2021609
Subject(s) - ergodic theory , surjective function , sensitivity (control systems) , mathematics , combinatorics , space (punctuation) , integer (computer science) , metric space , inverse , discrete mathematics , pure mathematics , geometry , computer science , electronic engineering , engineering , programming language , operating system
As a stronger form of multi-sensitivity, the notion of ergodic multi-sensitivity (resp. strongly ergodically multi-sensitivity) is introduced. In particularly, it is proved that every topologically double ergodic continuous selfmap (resp. topologically double strongly ergodic selfmap) on a compact metric space is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive). And for any given integer $ m\geq 2 $, $ f $ is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive) if and only if so is $ f^{m} $. Also, it is shown that if $ f $ is a continuous surjection, then $ f $ is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive) if and only if so is $ \sigma_{f} $, where $ \sigma_{f} $ is the shift selfmap on the inverse limit space $ \lim\limits_{\leftarrow}(X, f) $. Moreover, it is proved that if $ f:X\rightarrow X $ (resp. $ g:Y\rightarrow Y $) is a map on a nontrivial metric space $ (X, d) $ (resp. $ (Y, d') $), and $ \pi $ is a semiopen factor map between $ (X, f) $ and $ (Y, g) $, then the ergodic multi-sensitivity (resp. the strongly ergodic multi-sensitivity) of $ g $ implies the same property of $ f $.