z-logo
open-access-imgOpen Access
A bipartite graph associated to elements and cosets of subgroups of a finite group
Author(s) -
Saba Al-Kaseasbeh,
Ahmad Erfanian
Publication year - 2021
Publication title -
aims mathematics
Language(s) - English
Resource type - Journals
ISSN - 2473-6988
DOI - 10.3934/math.2021603
Subject(s) - combinatorics , planarity testing , coset , bipartite graph , mathematics , edge transitive graph , graph , vertex (graph theory) , discrete mathematics , voltage graph , line graph
Let $ G $ be a finite group. A bipartite graph associated to elements and cosets of subgroups of $ G $ is the simple undirected graph $ \Gamma(G) $ with the vertex set $ V(\Gamma(G)) = A\cup B $, where $ A $ is the set of all elements of a group $ G $ and $ B $ is the set of all subgroups of a group $ G $ and two vertices $ x \in A $ and $ H \in B $ are adjacent if and only if $ xH = Hx $. In this article, several graph theoretical properties are investigated. Also, we obtain the diameter, girth, and the dominating number of $ \Gamma(G) $. We discuss the planarity and outer planarity for $ \Gamma(G) $. Finally, we prove that if $ p $ and $ q $ are distinct prime numbers and $ n = pq^k $, where $ p < q $ and $ k\geq 1 $, then $ \Gamma(D_{2n}) $ is not Hamiltonian.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom