z-logo
open-access-imgOpen Access
Preparation of gold-containing binary metal clusters by co-deposition-precipitation method and for hydrogenation of chloronitrobenzene
Author(s) -
Ya Ting Tsu,
Yu Wen Chen
Publication year - 2017
Publication title -
aims materials science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.367
H-Index - 16
eISSN - 2372-0484
pISSN - 2372-0468
DOI - 10.3934/matersci.2017.3.738
Subject(s) - bimetallic strip , catalysis , x ray photoelectron spectroscopy , alloy , metal , palladium , materials science , transmission electron microscopy , precipitation , inorganic chemistry , analytical chemistry (journal) , chemistry , chemical engineering , metallurgy , nanotechnology , biochemistry , chromatography , engineering , physics , meteorology
Nano-gold catalyst has been reported to have high activity and selectivity for liquid phase hydrogenation reaction. In this study, gold-containing bimetals were loaded on TiO2. For bimetallic catalysts, gold and different metals were prepared by the deposition-precipitation method, and then used NaBH4 to reduce metal cations. The catalysts were characterized by X-ray diffraction, transmission electron microscopy, high resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. The catalytic properties of these catalysts were tested by hydrogenation of p-chloronitrobenzene (p-CNB) in a batch reactor at 1.1 MPa H2 pressure, 373 K and 500 rpm. Cu, Ag, Ru, and Pd formed nano-alloy with Au. In addition, Cu–Au, Ag–Au, and Ru–Au alloy had Cu-, Ag-, and Ru-enriched surface, respectively. Instead, Pd–Au alloy had Pd-enriched surface. There are two kinds of alloy effects: (1) geometric effects, i.e., the surface-enriched metal would change the distance of Au–Au atoms that is required for facilitating the hydrogenation of chloronitrobenzene; and (2) electronic effects, which involve charge transfer between the metals. The activity decreased in the following order: PdAu/TiO2 > Au/TiO2 > NiAu/TiO2 > AgAu/TiO2 > RuAu/TiO2 > CuAu/TiO2. Comparing with other metals, adding Pd in Au showed a higher activity. Adding palladium could reduce gold-valence state, and increased active sites for reaction

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here