z-logo
open-access-imgOpen Access
Inkjet printed drug-releasing polyelectrolyte multilayers for wound dressings
Author(s) -
Amy M. Peterson,
Huilin Yang
Publication year - 2017
Publication title -
aims materials science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.367
H-Index - 16
eISSN - 2372-0484
pISSN - 2372-0468
DOI - 10.3934/matersci.2017.2.452
Subject(s) - polyelectrolyte , materials science , substrate (aquarium) , gentamicin , fabrication , nanotechnology , chemical engineering , chemistry , polymer , composite material , antibiotics , medicine , biochemistry , oceanography , alternative medicine , pathology , engineering , geology
Inkjet printing was used as a novel processing method for the preparation of polyelectrolyte multilayers. Conformal, consistent coatings were formed on a cotton substrate. As a demonstration of a potential application of this processing method, polyelectrolyte multilayers were assembled on cotton for wound dressing. When loaded with gentamicin, these coatings demonstrated burst release of 50% of the loaded gentamicin over the first five hours, followed by consistent release of 0.15 µg/(cm2-h) for at least four days. Significant antimicrobial activity of the gentamicin-releasing polyelectrolyte multilayer-coated cotton was observed, with a zone of inhibition of 1.575 ± 0.03 cm. This result is comparable to the zone of inhibition for cotton soaked in gentamicin (1.75 ± 0.04 cm), indicating that the inkjet printing processing method does not degrade gentamicin. Inkjet printing shows promise as a low cost, versatile option for polyelectrolyte multilayer fabrication. Additionally, as a scalable process, inkjet printed samples exhibited consistent antibacterial function for over three months after preparation

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here