z-logo
open-access-imgOpen Access
Theoretical study of chitosan-graphene and other chitosan-based nanocomposites stability
Author(s) -
Е. Л. Коссович
Publication year - 2017
Publication title -
aims materials science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.367
H-Index - 16
eISSN - 2372-0484
pISSN - 2372-0468
DOI - 10.3934/matersci.2017.2.317
Subject(s) - chitosan , nanocomposite , graphene , materials science , chitin , carbon nanotube , composite number , oxide , nanotechnology , composite material , chemical engineering , engineering , metallurgy
Application of new smart materials in various areas including healthcare engineering and medicine became a very promising and urgent area of research. Chitosan has proved its uniqueness as a basis for multipurpose aims: wound dressing, tissue engineering, drug delivery, etc. Unfortunately, nowadays the smart materials are not being constructed fast enough due to complications connected with time and pricing costs of in vivo development with simultaneous constant control of desirable properties. In this paper, a simple approach is proposed for predictive, at the stage of very beginning, analysis of structure and stability of newly-developed materials, such as chitosan nanocomposites. This approach is based on molecular modeling methods, namely, on a new hybrid multiscale model of chitosan oligomers. This model has already proved its efficiency for evaluation of nanocomposites mechanical properties using only computer simulations and appropriate software. Applicability of such approach is shown here for four types of chitosan-based nanocomposites with different fillers—carbon nanotubes, graphene, graphene oxide and chitin nanoparticles. On using a simple method of predicting the stability of such composites, laws of interaction between the chitosan matrix and fillers are shown depending on the relative mass share of the fillers within the composite

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here