z-logo
open-access-imgOpen Access
A Lie algebra-theoretic approach to characterisation of collision invariants of the Boltzmann equation for general convex particles
Author(s) -
Mark Wilkinson
Publication year - 2022
Publication title -
kinetic and related models
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.987
H-Index - 28
eISSN - 1937-5093
pISSN - 1937-5077
DOI - 10.3934/krm.2022008
Subject(s) - lie algebra , regular polygon , mathematics , invariant (physics) , boltzmann constant , combinatorics , scattering , pure mathematics , algebra over a field , physics , mathematical physics , geometry , quantum mechanics
By studying scattering Lie groups and their associated Lie algebras, we introduce a new method for the characterisation of collision invariants for physical scattering families associated to smooth, convex hard particles in the particular case that the collision invariant is of class \begin{document}$ \mathscr{C}^{1} $\end{document} . This work extends that of Saint-Raymond and Wilkinson ( Communications on Pure and Applied Mathematics (2018), 71(8), pp. 1494–1534), in which the authors characterise collision invariants only in the case of the so-called canonical physical scattering family. Indeed, our method extends to the case of non-canonical physical scattering, whose existence was reported in Wilkinson ( Archive for Rational Mechanics and Analysis (2020), 235(3), pp. 2055–2083). Moreover, our new method improves upon the work in Saint-Raymond and Wilkinson as we place no symmetry hypotheses on the underlying non-spherical particles which make up the gas under consideration. The techniques established in this paper also yield a new proof of the result of Boltzmann for collision invariants of class \begin{document}$ \mathscr{C}^{1} $\end{document} in the classical case of hard spheres.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here