A generic distal tower of arbitrary countable height over an arbitrary infinite ergodic system
Author(s) -
Eli Glasner,
Benjamin Weiss
Publication year - 2021
Publication title -
journal of modern dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.668
H-Index - 25
eISSN - 1930-532X
pISSN - 1930-5311
DOI - 10.3934/jmd.2021015
Subject(s) - mathematics , ergodic theory , countable set , tower , quotient , extension (predicate logic) , combinatorics , rank (graph theory) , pure mathematics , discrete mathematics , civil engineering , computer science , engineering , programming language
We show the existence, over an arbitrary infinite ergodic \begin{document}$ \mathbb{Z} $\end{document} -dynamical system, of a generic ergodic relatively distal extension of arbitrary countable rank and arbitrary infinite compact extending groups (or more generally, infinite quotients of compact groups) in its canonical distal tower.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom