Open-loop equilibrium strategy for mean-variance Portfolio selection with investment constraints in a non-Markovian regime-switching jump-diffusion model
Author(s) -
Ishak Alia,
Mohamed Alia
Publication year - 2022
Publication title -
journal of industrial and management optimization
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.325
H-Index - 32
eISSN - 1553-166X
pISSN - 1547-5816
DOI - 10.3934/jimo.2022048
Subject(s) - jump diffusion , uniqueness , markov process , stochastic differential equation , mathematical optimization , portfolio , investment strategy , mathematics , computer science , markov chain , diffusion , mathematical economics , jump , economics , mathematical analysis , physics , thermodynamics , profit (economics) , statistics , quantum mechanics , microeconomics , machine learning , financial economics
This paper is devoted to study the open-loop equilibrium strategy for a mean-variance portfolio problem with investment constraints in a non-Markovian regime-switching jump-diffusion model. Specially, the investment strategies are constrained in a closed convex cone and all coefficients in the model are stochastic processes adapted to the filtration generated by a Markov chain. First, we provide a necessary and sufficient condition for an equilibrium strategy, which involves a system of forward and backward stochastic differential equations (FBSDEs, for short). Second, by solving these FBSDEs, we obtain a feedback representation of the equilibrium strategy. Third, we prove a theorem ensuring the almost everywhere uniqueness of the equilibrium solution. Finally, the results are applied to solve an example of the Markovian regime-switching model.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom