An adaptive algorithm for maximization of non-submodular function with a matroid constraint
Author(s) -
Xin Sun,
Dachuan Xu,
Dongmei Zhang,
Yang Zhou
Publication year - 2022
Publication title -
journal of industrial and management optimization
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.325
H-Index - 32
eISSN - 1553-166X
pISSN - 1547-5816
DOI - 10.3934/jimo.2022031
Subject(s) - submodular set function , matroid , combinatorics , mathematics , greedy algorithm , maximization , function (biology) , constraint (computer aided design) , approximation algorithm , discrete mathematics , weighted matroid , set function , oracle , set (abstract data type) , matroid partitioning , algorithm , mathematical optimization , computer science , graphic matroid , geometry , software engineering , evolutionary biology , biology , programming language
In the paper, we design an adaptive algorithm for non-submodular set function maximization over a single matroid constraint. We measure the deviation of the set function from fully submodular with the help of the generic submodularity ratio \begin{document}$ \gamma $\end{document} . The adaptivity quantifies the information theoretic complexity of oracle optimization for parallel computations. We propose a new approximation algorithm based on the continuous greedy approach and prove that the algorithm could obtain a fractional solution with approximation ratio \begin{document}$ (1-e^{-{\gamma}^2}-\mathcal{O}(\epsilon)) $\end{document} in \begin{document}$ \mathcal{O}\left(\frac{\log n\log(k/\gamma\epsilon)} {\epsilon^{-2} \log n\log(1/\gamma)-\epsilon^{-1}\log(1-\epsilon)}\right) $\end{document} adaptive rounds. We then use the contention resolution schemes to convert the fractional solution to a discrete one with \begin{document}$ \gamma(1-e^{-1})(1-e^{-{\gamma}^2}-\mathcal{O}(\epsilon)) $\end{document} -approximation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom