z-logo
open-access-imgOpen Access
An adaptive algorithm for maximization of non-submodular function with a matroid constraint
Author(s) -
Xin Sun,
Dachuan Xu,
Dongmei Zhang,
Yang Zhou
Publication year - 2022
Publication title -
journal of industrial and management optimization
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.325
H-Index - 32
eISSN - 1553-166X
pISSN - 1547-5816
DOI - 10.3934/jimo.2022031
Subject(s) - submodular set function , matroid , combinatorics , mathematics , greedy algorithm , maximization , function (biology) , constraint (computer aided design) , approximation algorithm , discrete mathematics , weighted matroid , set function , oracle , set (abstract data type) , matroid partitioning , algorithm , mathematical optimization , computer science , graphic matroid , geometry , software engineering , evolutionary biology , biology , programming language
In the paper, we design an adaptive algorithm for non-submodular set function maximization over a single matroid constraint. We measure the deviation of the set function from fully submodular with the help of the generic submodularity ratio \begin{document}$ \gamma $\end{document} . The adaptivity quantifies the information theoretic complexity of oracle optimization for parallel computations. We propose a new approximation algorithm based on the continuous greedy approach and prove that the algorithm could obtain a fractional solution with approximation ratio \begin{document}$ (1-e^{-{\gamma}^2}-\mathcal{O}(\epsilon)) $\end{document} in \begin{document}$ \mathcal{O}\left(\frac{\log n\log(k/\gamma\epsilon)} {\epsilon^{-2} \log n\log(1/\gamma)-\epsilon^{-1}\log(1-\epsilon)}\right) $\end{document} adaptive rounds. We then use the contention resolution schemes to convert the fractional solution to a discrete one with \begin{document}$ \gamma(1-e^{-1})(1-e^{-{\gamma}^2}-\mathcal{O}(\epsilon)) $\end{document} -approximation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom