Image space analysis for uncertain multiobjective optimization problems: Robust optimality conditions
Author(s) -
Xiaoqing Ou,
Suliman AlHomidan,
Qamrul Hasan Ansari,
Jiawei Chen
Publication year - 2021
Publication title -
journal of industrial and management optimization
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.325
H-Index - 32
eISSN - 1553-166X
pISSN - 1547-5816
DOI - 10.3934/jimo.2021199
Subject(s) - mathematics , combinatorics , saddle point , space (punctuation) , function (biology) , discrete mathematics , computer science , geometry , evolutionary biology , biology , operating system
We introduce the \begin{document}$ \mathcal{C} $\end{document} -robust efficient solution and optimistic \begin{document}$ \mathcal{C} $\end{document} -robust efficient solution of uncertain multiobjective optimization problems (UMOP). By using image space analysis, robust optimality conditions as well as saddle point sufficient optimality conditions for uncertain multiobjective optimization problems are established based on real-valued linear (regular) weak separation function and real-valued (vector-valued) nonlinear (regular) weak separation functions. We also introduce two inclusion problems by using the image sets of robust counterpart of (UMOP) and establish the relations between the solution of the inclusion problems and the \begin{document}$ \mathcal{C} $\end{document} -robust efficient solution (respectively, optimistic \begin{document}$ \mathcal{C} $\end{document} -robust efficient solution) of (UMOP).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom