Single-machine Pareto-scheduling with multiple weighting vectors for minimizing the total weighted late works
Author(s) -
Shuen Guo,
Zhichao Geng,
Jinjiang Yuan
Publication year - 2021
Publication title -
journal of industrial and management optimization
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.325
H-Index - 32
eISSN - 1553-166X
pISSN - 1547-5816
DOI - 10.3934/jimo.2021192
Subject(s) - weighting , unary operation , pareto principle , mathematical optimization , time complexity , computer science , polynomial time approximation scheme , scheduling (production processes) , mathematics , algorithm , combinatorics , medicine , radiology
In this paper, we study the single-machine Pareto-scheduling of jobs with multiple weighting vectors for minimizing the total weighted late works. Each weighting vector has its corresponding weighted late work. The goal of the problem is to find the Pareto-frontier for the weighted late works of the multiple weighting vectors. When the number of weighting vectors is arbitrary, it is implied in the literature that the problem is unary NP-hard. Then we concentrate on our research under the assumption that the number of weighting vectors is a constant. For this problem, we present a dynamic programming algorithm running in pseudo-polynomial time and a fully polynomial-time approximation scheme (FPTAS).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom