
B2C online ride-hailing pricing and service optimization under competitions
Author(s) -
Qingfeng Meng,
Wenjing Li,
Zhen Li,
Changzhi Wu
Publication year - 2022
Publication title -
journal of industrial and management optimization
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.325
H-Index - 32
eISSN - 1553-166X
pISSN - 1547-5816
DOI - 10.3934/jimo.2021147
Subject(s) - profit (economics) , supply and demand , competition (biology) , incentive , nash equilibrium , microeconomics , game theory , business , service quality , industrial organization , pricing strategies , economics , service (business) , marketing , ecology , biology
B2C online ride-hailing is to provide customers with anytime, anywhere and on-call ride services by professional vehicles and professional drivers. How to maintain good service quality and reasonable pricing under competition is of importance to a platform. In this paper, we will integrate pricing and service together to maximize the profit of a platform through Nash game theory. Specifically, we will establish the models for there scenarios: the demand market competition under decline of ride demand, the supply market competition under surge of ride demand, and the coexistence of demand and supply market competition for stable ride demand. Then, the Nash equilibriums are derived for the three models which are corresponding to minimize ride price, optimize quality of efforts and maximize profit. Our results uncover that the driver's incentive amount is conducive to the profit of both platform and the drivers for the case of demand market competition. The platforms and drivers achieve the highest profit under supply market competition, and the strategy through minimizing price and maximizing service can effectively adjust the balance between market supply and demand.