Merging short-term and long-term planning problems in home health care under continuity of care and patterns for visits
Author(s) -
Semih Yalçındağ,
Ettore Lanzarone
Publication year - 2021
Publication title -
journal of industrial and management optimization
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.325
H-Index - 32
eISSN - 1553-166X
pISSN - 1547-5816
DOI - 10.3934/jimo.2021029
Subject(s) - merge (version control) , scheduling (production processes) , term (time) , computer science , time horizon , operator (biology) , continuity of care , operations research , health care , mathematical optimization , mathematics , economics , biochemistry , chemistry , physics , repressor , quantum mechanics , transcription factor , gene , information retrieval , economic growth
Home Health Care (HHC) human resource management is a complex process. Moreover, as patients are assisted for a long time, their demand for care evolves in terms of type and frequency of visits. Under continuity of care, this uncertain evolution must be considered even when scheduling the visits in the short-term, as the corresponding operator-to-patient assignments could generate overtimes and unbalanced workloads in the long-term, which must be fixed by reassigning some patients and deteriorating the continuity of care. On the other hand, the operator-to-patient assignment problem under continuity of care over a long time period could generate solutions that are infeasible when the scheduling constraints are considered. We analyze the trade-offs between the two problems, to analyze the conditions in which they can be sequentially solved or an integration is required. In particular, we take an assignment and scheduling model for short-term planning, an operator-to-patient assignment model over a long time horizon, and we merge them into a new combined model. Results on a set of realistic instances show that the combined model is necessary when the number of patterns is limited and the variability of patients' demands is high, whereas simpler models deserve to be applied in less critical situations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom