z-logo
open-access-imgOpen Access
Infinite lifting of an action of symplectomorphism group on the set of bi-Lagrangian structures
Author(s) -
Bertuel Tangue Ndawa
Publication year - 2022
Publication title -
the journal of geometric mechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.511
H-Index - 17
eISSN - 1941-4897
pISSN - 1941-4889
DOI - 10.3934/jgm.2022006
Subject(s) - cotangent bundle , parallelizable manifold , mathematics , manifold (fluid mechanics) , omega , symplectomorphism , lagrangian , symplectic geometry , tangent bundle , affine transformation , pure mathematics , combinatorics , physics , trigonometric functions , geometry , tangent space , quantum mechanics , mechanical engineering , engineering
We consider a smooth \begin{document}$ 2n $\end{document} -manifold \begin{document}$ M $\end{document} endowed with a bi-Lagrangian structure \begin{document}$ (\omega,\mathcal{F}_{1},\mathcal{F}_{2}) $\end{document} . That is, \begin{document}$ \omega $\end{document} is a symplectic form and \begin{document}$ (\mathcal{F}_{1},\mathcal{F}_{2}) $\end{document} is a pair of transversal Lagrangian foliations on \begin{document}$ (M, \omega) $\end{document} . Such a structure has an important geometric object called the Hess Connection. Among the many importance of Hess connections, they allow to classify affine bi-Lagrangian structures. In this work, we show that a bi-Lagrangian structure on \begin{document}$ M $\end{document} can be lifted as a bi-Lagrangian structure on its trivial bundle \begin{document}$ M\times\mathbb{R}^n $\end{document} . Moreover, the lifting of an affine bi-Lagrangian structure is also affine. We define a dynamic on the symplectomorphism group and the set of bi-Lagrangian structures (that is an action of the symplectomorphism group on the set of bi-Lagrangian structures). This dynamic is compatible with Hess connections, preserves affine bi-Lagrangian structures, and can be lifted on \begin{document}$ M\times\mathbb{R}^n $\end{document} . This lifting can be lifted again on \begin{document}$ \left(M\times\mathbb{R}^{2n}\right)\times\mathbb{R}^{4n} $\end{document} , and coincides with the initial dynamic (in our sense) on \begin{document}$ M\times\mathbb{R}^n $\end{document} . By replacing \begin{document}$ M\times\mathbb{R}^{2n} $\end{document} with the tangent bundle \begin{document}$ TM $\end{document} or cotangent bundle \begin{document}$ T^{*}M $\end{document} of \begin{document}$ M $\end{document} , results still hold when \begin{document}$ M $\end{document} is parallelizable.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom