z-logo
open-access-imgOpen Access
Rotation invariant patterns for a nonlinear Laplace-Beltrami equation: A Taylor-Chebyshev series approach
Author(s) -
Jan Bouwe van den Berg,
Gabriel William Duchesne,
JeanPhilippe Lessard
Publication year - 2022
Publication title -
journal of computational dynamics
Language(s) - English
Resource type - Journals
eISSN - 2158-2505
pISSN - 2158-2491
DOI - 10.3934/jcd.2022005
Subject(s) - mathematics , invariant (physics) , taylor series , mathematical analysis , combinatorics , mathematical physics
In this paper, we introduce a rigorous computational approach to prove existence of rotation invariant patterns for a nonlinear Laplace-Beltrami equation posed on the 2-sphere. After changing to spherical coordinates, the problem becomes a singular second order boundary value problem (BVP) on the interval \begin{document}$ (0,\frac{\pi}{2}] $\end{document} with a removable singularity at zero. The singularity is removed by solving the equation with Taylor series on \begin{document}$ (0,\delta] $\end{document} (with \begin{document}$ \delta $\end{document} small) while a Chebyshev series expansion is used to solve the problem on \begin{document}$ [\delta,\frac{\pi}{2}] $\end{document} . The two setups are incorporated in a larger zero-finding problem of the form \begin{document}$ F(a) = 0 $\end{document} with \begin{document}$ a $\end{document} containing the coefficients of the Taylor and Chebyshev series. The problem \begin{document}$ F = 0 $\end{document} is solved rigorously using a Newton-Kantorovich argument.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom