
Computing Reeb dynamics on four-dimensional convex polytopes
Author(s) -
Julian Chaidez,
Michael Hutchings
Publication year - 2021
Publication title -
journal of computational dynamics
Language(s) - English
Resource type - Journals
eISSN - 2158-2505
pISSN - 2158-2491
DOI - 10.3934/jcd.2021016
Subject(s) - polytope , mathematics , combinatorics , regular polygon , boundary (topology) , conjecture , smoothing , convex polytope , geometry , convex set , mathematical analysis , convex optimization , statistics
We study the combinatorial Reeb flow on the boundary of a four-dimensional convex polytope. We establish a correspondence between "combinatorial Reeb orbits" for a polytope, and ordinary Reeb orbits for a smoothing of the polytope, respecting action and Conley-Zehnder index. One can then use a computer to find all combinatorial Reeb orbits up to a given action and Conley-Zehnder index. We present some results of experiments testing Viterbo's conjecture and related conjectures. In particular, we have found some new examples of polytopes with systolic ratio \begin{document}$ 1 $\end{document} .