z-logo
open-access-imgOpen Access
A kernel-based method for data-driven koopman spectral analysis
Author(s) -
Matthew O. Williams,
Clarence W. Rowley,
Ioannis G. Kevrekidis
Publication year - 2015
Publication title -
journal of computational dynamics
Language(s) - English
Resource type - Journals
eISSN - 2158-2505
pISSN - 2158-2491
DOI - 10.3934/jcd.2015005
Subject(s) - dynamic mode decomposition , scalar (mathematics) , eigenfunction , observable , kernel (algebra) , mathematics , representer theorem , vorticity , algorithm , subspace topology , scalar field , computer science , kernel embedding of distributions , kernel method , mathematical analysis , artificial intelligence , discrete mathematics , geometry , physics , eigenvalues and eigenvectors , mathematical physics , quantum mechanics , machine learning , vortex , support vector machine , thermodynamics

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom