z-logo
open-access-imgOpen Access
A variational saturation-value model for image decomposition: Illumination and reflectance
Author(s) -
Wei Wang,
Caifei Li
Publication year - 2021
Publication title -
inverse problems and imaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.755
H-Index - 40
eISSN - 1930-8345
pISSN - 1930-8337
DOI - 10.3934/ipi.2021061
Subject(s) - brightness , reflectivity , minification , mathematics , regularization (linguistics) , saturation (graph theory) , color space , computer science , component (thermodynamics) , image (mathematics) , algorithm , artificial intelligence , mathematical optimization , optics , physics , combinatorics , thermodynamics
In this paper, we study to decompose a color image into the illumination and reflectance components in saturation-value color space. By considering the spatial smoothness of the illumination component, the total variation regularization of the reflectance component, and the data-fitting in saturation-value color space, we develop a novel variational saturation-value model for image decomposition. The main aim of the proposed model is to formulate the decomposition of a color image such that the illumination component is uniform with only brightness information, and the reflectance component contains the color information. We establish the theoretical result about the existence of the solution of the proposed minimization problem. We employ a primal-dual algorithm to solve the proposed minimization problem. Experimental results are shown to illustrate the effectiveness of the proposed decomposition model in saturation-value color space, and demonstrate the performance of the proposed method is better than the other testing methods.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom