z-logo
open-access-imgOpen Access
Non-local regularization of inverse problems
Author(s) -
Gabriel Peyré,
Sébastien Bougleux,
Laurent D. Cohen
Publication year - 2011
Publication title -
inverse problems and imaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.755
H-Index - 40
eISSN - 1930-8345
pISSN - 1930-8337
DOI - 10.3934/ipi.2011.5.511
Subject(s) - regularization (linguistics) , inverse problem , inpainting , computer science , wavelet , inverse , mathematical optimization , mathematics , graph , algorithm , artificial intelligence , image (mathematics) , theoretical computer science , mathematical analysis , geometry
International audienceThis article proposes a new framework to regularize imaging lin- ear inverse problems using an adaptive non-local energy. A non-local graph is optimized to match the structures of the image to recover. This allows a better reconstruction of geometric edges and textures present in natural images. A fast algorithm computes iteratively both the solution of the regularization pro- cess and the non-local graph adapted to this solution. The graph adaptation is efficient to solve inverse problems with randomized measurements such as inpainting random pixels or compressive sensing recovery. Our non-local regularization gives state-of-the-art results for this class of inverse problems. On more challenging problems such as image super-resolution, our method gives results comparable to sparse regularization in a translation invariant wavelet frame

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom