z-logo
open-access-imgOpen Access
The existence results for a class of generalized quasilinear Schrödinger equation with nonlocal term
Author(s) -
Die Hu,
Jin Peng,
Xianhua Tang
Publication year - 2022
Publication title -
electronic research archive
Language(s) - English
Resource type - Journals
ISSN - 2688-1594
DOI - 10.3934/era.2022100
Subject(s) - nabla symbol , combinatorics , physics , state (computer science) , mathematical physics , mathematics , quantum mechanics , omega , algorithm
In this paper, we discuss the generalized quasilinear Schrödinger equation with nonlocal term: \begin{document}$\begin{align} -\mathrm{div}(g^{2}(u)\nabla u)+g(u)g'(u)|\nabla u|^{2}+V(x)u = \left(|x|^{-\mu}\ast F(u)\right)f( u),\; \; x\in \mathbb{R}^{N}, \;\;\;\;\;\;\;\;({{\rm{P}}})\end{align}$\end{document} where $ N\geq 3 $, $ \mu\in(0, N) $, $ g\in \mathbb{C}^{1}(\mathbb{R}, \mathbb{R}^{+}) $, $ V\in \mathbb{C}^{1}(\mathbb{R}^N, \mathbb{R}) $ and $ f\in \mathbb{C}(\mathbb{R}, \mathbb{R}) $. Under some "Berestycki-Lions type conditions" on the nonlinearity $ f $ which are almost necessary, we prove that problem $ (\rm P) $ has a nontrivial solution $ \bar{u}\in H^{1}(\mathbb{R}^{N}) $ such that $ \bar{v} = G(\bar{u}) $ is a ground state solution of the following problem \begin{document}$\begin{align} - \Delta v+V(x)\frac{G^{-1}(v)}{g(G^{-1}(v))} = \left(|x|^{-\mu}\ast F(G^{-1}(v))\right)f( G^{-1}(v)),\; \; x\in \mathbb{R}^{N}, \;\;\;\;\;\;\;\;({{\rm{\bar P}}})\end{align}$\end{document} where $ G(t): = \int_{0}^{t} g(s) ds $. We also give a minimax characterization for the ground state solution $ \bar{v} $.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom