Non-singular solutions of $ p $-Laplace problems, allowing multiple changes of sign in the nonlinearity
Author(s) -
Philip Korman
Publication year - 2022
Publication title -
electronic research archive
Language(s) - English
Resource type - Journals
ISSN - 2688-1594
DOI - 10.3934/era.2022073
Subject(s) - uniqueness , mathematics , combinatorics , sign (mathematics) , laplace transform , physics , mathematical physics , mathematical analysis
For the $ p $-Laplace Dirichlet problem (where $ \varphi (t) = t|t|^{p-2} $, $ p > 1 $) \begin{document}$ \varphi(u'(x))'+ f(u(x)) = 0 \; \; \; \; {\rm{for}}\; -1<x<1 , \; \; u(-1) = u(1) = 0 $\end{document} assume that $ f'(u) > (p-1)\frac{f(u)}{u} > 0 $ for $ u > \gamma > 0 $, while $ \int _u^{\gamma} f(t) \, dt < 0 $ for all $ u \in (0, \gamma) $. Then any positive solution, with $ \max _{(-1, 1)} u(x) = u(0) > \gamma $, is non-singular, no matter how many times $ f(u) $ changes sign on $ (0, \gamma) $. The uniqueness of solution follows.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom