Global classical solutions for a class of reaction-diffusion system with density-suppressed motility
Author(s) -
Wenbin Lyu,
ZhiAn Wang
Publication year - 2022
Publication title -
electronic research archive
Language(s) - English
Resource type - Journals
ISSN - 2688-1594
DOI - 10.3934/era.2022052
Subject(s) - homogeneous , omega , physics , combinatorics , mathematics , quantum mechanics
This paper is concerned with a class of reaction-diffusion system with density-suppressed motility \begin{document}$ \begin{equation*} \begin{cases} u_{t} = \Delta(\gamma(v) u)+\alpha u F(w), & x \in \Omega, \quad t>0, \\ v_{t} = D \Delta v+u-v, & x \in \Omega, \quad t>0, \\ w_{t} = \Delta w-u F(w), & x \in \Omega, \quad t>0, \end{cases} \end{equation*} $\end{document} under homogeneous Neumann boundary conditions in a smooth bounded domain $ \Omega\subset \mathbb{R}^n\; (n\leq 2) $, where $ \alpha > 0 $ and $ D > 0 $ are constants. The random motility function $ \gamma $ satisfies \begin{document}$ \begin{equation*} \gamma\in C^3((0, +\infty)), \ \gamma>0, \ \gamma'<0\, \ \text{on}\, \ (0, +\infty) \ \ \text{and}\ \ \lim\limits_{v\rightarrow +\infty}\gamma(v) = 0. \end{equation*} $\end{document} The intake rate function $ F $ satisfies $ F\in C^1([0, +\infty)), \, F(0) = 0\, \ \text{and}\ \, F > 0\, \ \text{on}\, \ (0, +\infty) $. We show that the above system admits a unique global classical solution for all non-negative initial data $ u_0\in W^{1, \infty}(\Omega), \, v_0\in W^{1, \infty}(\Omega), \, w_0\in W^{1, \infty}(\Omega) $. Moreover, if there exist $ k > 0 $ and $ \overline{v} > 0 $ such that \begin{document}$ \begin{equation*} \inf\limits_{v>\overline{v}}v^k\gamma(v)>0, \end{equation*} $\end{document} then the global solution is bounded uniformly in time.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom