Multiple solutions for the fourth-order Kirchhoff type problems in $ \mathbb{R}^N $ involving concave-convex nonlinearities
Author(s) -
Zijian Wu,
Haibo Chen
Publication year - 2022
Publication title -
electronic research archive
Language(s) - English
Resource type - Journals
ISSN - 2688-1594
DOI - 10.3934/era.2022044
Subject(s) - nabla symbol , mathematics , combinatorics , regular polygon , order (exchange) , nehari manifold , multiplicity (mathematics) , convex function , function (biology) , mathematical analysis , physics , geometry , nonlinear system , omega , quantum mechanics , finance , economics , evolutionary biology , biology
In this paper, we study the multiplicity of solutions for the following fourth-order Kirchhoff type problem involving concave-convex nonlinearities and indefinite weight function \begin{document}$ \begin{equation*} \Delta^2u-\left(a+b\int_{ \mathbb{R}^N}|\nabla u|^2dx\right)\Delta u+V(x)u = \lambda f(x)|u|^{q-2}u+|u|^{p-2}u, \end{equation*} $\end{document} where $ u\in H^2(\mathbb{R}^N)(4 < N < 8) $, $ \lambda > 0, 1 < q < 2, 4 < p < 2_\ast(2_\ast = 2N/(N-4)) $, $ f(x) $ satisfy suitable conditions, and $ f(x) $ may change sign in $ \mathbb{R}^N $. Using Nehari manifold and fibering maps, the existense of multiple solutions is established. Moreover, the existence of sign-changing solution is obtained for $ f(x)\equiv0 $. Our results generalize some recent results in the literature.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom