
Entire positive $ k $-convex solutions to $ k $-Hessian type equations and systems
Author(s) -
Shuangshuang Bai,
Xuemei Zhang,
Meiqiang Feng
Publication year - 2022
Publication title -
electronic research archive
Language(s) - English
Resource type - Journals
ISSN - 2688-1594
DOI - 10.3934/era.2022025
Subject(s) - combinatorics , mathematics , monotone polygon , hessian matrix , regular polygon , type (biology) , geometry , ecology , biology
In this paper, we study the existence of entire positive solutions for the $ k $-Hessian type equation \begin{document}$ {\rm S}_k(D^2u+\alpha I) = p(|x|)f^k(u), \ \ x\in \mathbb{R}^n $\end{document} and system \begin{document}$ \begin{cases} {\rm S}_k(D^2u+\alpha I) = p(|x|)f^k(v), \ \ x\in \mathbb{R}^n, \\ {\rm S}_k(D^2v+\alpha I) = q(|x|)g^k(u), \ \ x\in \mathbb{R}^n, \end{cases} $\end{document} where $ D^2u $ is the Hessian of $ u $ and $ I $ denotes unit matrix. The arguments are based upon a new monotone iteration scheme.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom