z-logo
open-access-imgOpen Access
Entire positive $ k $-convex solutions to $ k $-Hessian type equations and systems
Author(s) -
Shuangshuang Bai,
Xuemei Zhang,
Meiqiang Feng
Publication year - 2022
Publication title -
electronic research archive
Language(s) - English
Resource type - Journals
ISSN - 2688-1594
DOI - 10.3934/era.2022025
Subject(s) - combinatorics , mathematics , monotone polygon , hessian matrix , regular polygon , type (biology) , geometry , ecology , biology
In this paper, we study the existence of entire positive solutions for the $ k $-Hessian type equation \begin{document}$ {\rm S}_k(D^2u+\alpha I) = p(|x|)f^k(u), \ \ x\in \mathbb{R}^n $\end{document} and system \begin{document}$ \begin{cases} {\rm S}_k(D^2u+\alpha I) = p(|x|)f^k(v), \ \ x\in \mathbb{R}^n, \\ {\rm S}_k(D^2v+\alpha I) = q(|x|)g^k(u), \ \ x\in \mathbb{R}^n, \end{cases} $\end{document} where $ D^2u $ is the Hessian of $ u $ and $ I $ denotes unit matrix. The arguments are based upon a new monotone iteration scheme.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom