
Bi-shifting semantic auto-encoder for zero-shot learning
Author(s) -
Yu Wang,
AUTHOR_ID
Publication year - 2022
Publication title -
electronic research archive
Language(s) - English
Resource type - Journals
ISSN - 2688-1594
DOI - 10.3934/era.2022008
Subject(s) - computer science , projection (relational algebra) , artificial intelligence , encoder , benchmark (surveying) , visual space , domain (mathematical analysis) , disjoint sets , generalization , function (biology) , pattern recognition (psychology) , algorithm , theoretical computer science , mathematics , mathematical analysis , geodesy , combinatorics , neuroscience , evolutionary biology , perception , biology , geography , operating system
Zero-shot learning aims to transfer the model of labeled seen classes in the source domain to the disjoint unseen classes without annotations in the target domain. Most existing approaches generally consider directly adopting the visual-semantic projection function learned in the source domain to the target domain without adaptation. However, due to the distribution discrepancy between the two domains, it remains challenging in dealing with the projection domain shift problem. In this work, we formulate a novel bi-shifting semantic auto-encoder to learn the semantic representations of the target instances and reinforce the generalization ability of the projection function. The encoder aims at mapping the visual features into the semantic space by leveraging the visual features of target instances and is guided by the semantic prototypes of seen classes. While two decoders manage to respectively reconstruct the original visual features in the source and target domains. Thus, our model can capture the generalized semantic characteristics related with the seen and unseen classes to alleviate the projection function problem. Furthermore, we develop an efficient algorithm by the advantage of the linear projection functions. Extensive experiments on the five benchmark datasets demonstrate the competitive performance of our proposed model.