z-logo
open-access-imgOpen Access
Canonical maps of general hypersurfaces in Abelian varieties
Author(s) -
Fabrizio Catanese,
Luca Cesarano
Publication year - 2021
Publication title -
electronic research archive
Language(s) - English
Resource type - Journals
ISSN - 2688-1594
DOI - 10.3934/era.2021087
Subject(s) - mathematics
The main theorem of this paper is that, for a general pair \begin{document}$ (A,X) $\end{document} of an (ample) hypersurface \begin{document}$ X $\end{document} in an Abelian Variety \begin{document}$ A $\end{document} , the canonical map \begin{document}$ \Phi_X $\end{document} of \begin{document}$ X $\end{document} is birational onto its image if the polarization given by \begin{document}$ X $\end{document} is not principal (i.e., its Pfaffian \begin{document}$ d $\end{document} is not equal to \begin{document}$ 1 $\end{document} ). We also easily show that, setting \begin{document}$ g = dim (A) $\end{document} , and letting \begin{document}$ d $\end{document} be the Pfaffian of the polarization given by \begin{document}$ X $\end{document} , then if \begin{document}$ X $\end{document} is smooth and\begin{document}$ \Phi_X : X {\rightarrow } {\mathbb{P}}^{N: = g+d-2} $\end{document}is an embedding, then necessarily we have the inequality \begin{document}$ d \geq g + 1 $\end{document} , equivalent to \begin{document}$ N : = g+d-2 \geq 2 \ dim(X) + 1. $\end{document} Hence we formulate the following interesting conjecture, motivated by work of the second author: if \begin{document}$ d \geq g + 1, $\end{document} then, for a general pair \begin{document}$ (A,X) $\end{document} , \begin{document}$ \Phi_X $\end{document} is an embedding.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom