Global dynamics in a competitive two-species and two-stimuli chemotaxis system with chemical signalling loop
Author(s) -
Rong Zhang,
Liangchen Wang
Publication year - 2021
Publication title -
electronic research archive
Language(s) - English
Resource type - Journals
ISSN - 2688-1594
DOI - 10.3934/era.2021086
Subject(s) - nabla symbol , omega , combinatorics , homogeneous , mathematics , arithmetic , physics , quantum mechanics
This paper deals with the following competitive two-species and two-stimuli chemotaxis system with chemical signalling loop\begin{document}$ \begin{eqnarray*} \left\{ \begin{array}{llll} u_t = \Delta u-\chi_1\nabla\cdot(u\nabla v)+\mu_1 u(1-u-a_1w),\, x\in \Omega,\, t>0,\\ 0 = \Delta v-v+w,\,x\in\Omega,\, t>0,\\ w_t = \Delta w-\chi_2\nabla\cdot(w\nabla z)-\chi_3\nabla\cdot(w\nabla v)+\mu_2 w(1-w-a_2u), \,x\in \Omega,\,t>0,\\ 0 = \Delta z-z+u, \,x\in\Omega,\, t>0, \end{array} \right. \end{eqnarray*} $\end{document}under homogeneous Neumann boundary conditions in a bounded domain \begin{document}$ \Omega\subset \mathbb{R}^n $\end{document} with \begin{document}$ n\geq1 $\end{document} , where the parameters \begin{document}$ a_1,a_2 $\end{document} , \begin{document}$ \chi_1, \chi_2, \chi_3 $\end{document} , \begin{document}$ \mu_1, \mu_2 $\end{document} are positive constants. We first showed some conditions between \begin{document}$ \frac{\chi_1}{\mu_1} $\end{document} , \begin{document}$ \frac{\chi_2}{\mu_2} $\end{document} , \begin{document}$ \frac{\chi_3}{\mu_2} $\end{document} and other ingredients to guarantee boundedness. Moreover, the large time behavior and rates of convergence have also been investigated under some explicit conditions.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom