Congruences for sixth order mock theta functions $ \lambda(q) $ and $ \rho(q) $
Author(s) -
Harman Kaur,
Meenakshi Rana
Publication year - 2021
Publication title -
electronic research archive
Language(s) - English
Resource type - Journals
ISSN - 2688-1594
DOI - 10.3934/era.2021084
Subject(s) - combinatorics , order (exchange) , congruence relation , mathematics , ramanujan's sum , modulo , arithmetic , economics , finance
Ramanujan introduced sixth order mock theta functions \begin{document}$ \lambda(q) $\end{document} and \begin{document}$ \rho(q) $\end{document} defined as:\begin{document}$ \begin{align*} \lambda(q) & = \sum\limits_{n = 0}^{\infty}\frac{(-1)^n q^n (q;q^2)_n}{(-q;q)_n},\\ \rho(q) & = \sum\limits_{n = 0}^{\infty}\frac{ q^{n(n+1)/2} (-q;q)_n}{(q;q^2)_{n+1}}, \end{align*} $\end{document}listed in the Lost Notebook. In this paper, we present some Ramanujan-like congruences and also find their infinite families modulo 12 for the coefficients of mock theta functions mentioned above.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom