z-logo
open-access-imgOpen Access
Planar vortices in a bounded domain with a hole
Author(s) -
Shusen Yan,
W. Yu
Publication year - 2021
Publication title -
electronic research archive
Language(s) - English
Resource type - Journals
ISSN - 2688-1594
DOI - 10.3934/era.2021081
Subject(s) - mathematics , omega , bounded function , combinatorics , domain (mathematical analysis) , physics , mathematical analysis , quantum mechanics
In this paper, we consider the inviscid, incompressible planar flows in a bounded domain with a hole and construct stationary classical solutions with single vortex core, which is closed to the hole. This is carried out by constructing solutions to the following semilinear elliptic problem\begin{document}$ \begin{equation} \begin{cases} -\Delta \psi = \lambda(\psi-\frac{\kappa}{4\pi}\ln\lambda)_+^p,\quad &\text{in}\; \Omega,\\ \psi = \rho_\lambda,\quad &\text{on}\; \partial O_0,\\ \psi = 0,\quad &\text{on}\; \partial\Omega_0, \end{cases} \;\;\;\;\;\;\;\;(1)\end{equation} $\end{document}where \begin{document}$ p>1 $\end{document} , \begin{document}$ \kappa $\end{document} is a positive constant, \begin{document}$ \rho_\lambda $\end{document} is a constant, depending on \begin{document}$ \lambda $\end{document} , \begin{document}$ \Omega = \Omega_0\setminus \bar{O}_0 $\end{document} and \begin{document}$ \Omega_0 $\end{document} , \begin{document}$ O_0 $\end{document} are two planar bounded simply-connected domains. We show that under the assumption \begin{document}$ (\ln\lambda)^\sigma\leq\rho_\lambda\leq (\ln\lambda)^{1-\sigma} $\end{document} for some \begin{document}$ \sigma>0 $\end{document} small, (1) has a solution \begin{document}$ \psi_\lambda $\end{document} , whose vorticity set \begin{document}$ \{y\in \Omega:\, \psi(y)-\kappa+\rho_\lambda\eta(y)>0\} $\end{document} shrinks to the boundary of the hole as \begin{document}$ \lambda\to +\infty $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom