z-logo
open-access-imgOpen Access
Ground state and nodal solutions for fractional Kirchhoff equation with pure critical growth nonlinearity
Author(s) -
Chungen Lıu,
Huabo Zhang
Publication year - 2021
Publication title -
electronic research archive
Language(s) - English
Resource type - Journals
ISSN - 2688-1594
DOI - 10.3934/era.2021038
Subject(s) - mathematics , state (computer science) , combinatorics , energy (signal processing) , algorithm , statistics
In this paper, we consider the existence of least energy nodal solution and ground state solution, energy doubling property for the following fractional critical problem\begin{document}$ \begin{cases} -(a+ b\|u\|_{K}^{2})\mathcal{L}_K u+V(x)u = |u|^{2^{\ast}_{\alpha}-2}u+ k f(x,u),&x\in\Omega,\\ u = 0,&x\in\mathbb{R}^{3}\backslash\Omega, \end{cases} $\end{document}where \begin{document}$ k $\end{document} is a positive parameter, \begin{document}$ \mathcal{L}_K $\end{document} stands for a nonlocal fractional operator which is defined with the kernel function \begin{document}$ K $\end{document} . By using the nodal Nehari manifold method, we obtain a least energy nodal solution \begin{document}$ u $\end{document} and a ground state solution \begin{document}$ v $\end{document} to this problem when \begin{document}$ k\gg1 $\end{document} , where the nonlinear function \begin{document}$ f:\mathbb{R}^{3}\times\mathbb{R}\rightarrow \mathbb{R} $\end{document} is a Carathéodory function.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom