z-logo
open-access-imgOpen Access
Global boundedness for a chemotaxis-competition system with signal dependent sensitivity and loop
Author(s) -
Chun Huang
Publication year - 2021
Publication title -
electronic research archive
Language(s) - English
Resource type - Journals
ISSN - 2688-1594
DOI - 10.3934/era.2021037
Subject(s) - nabla symbol , combinatorics , omega , homogeneous , physics , mathematics , quantum mechanics
In this work, the fully parabolic chemotaxis-competition system with loop\begin{document}$ \begin{eqnarray*} \left\{ \begin{array}{llll} &\partial_{t} u_{1} = d_1\Delta u_{1}-\nabla\cdot(u_{1}\chi_{11}(v_{1})\nabla v_{1}) \\& \qquad -\nabla\cdot(u_{1}\chi_{12}(v_{2})\nabla v_{2}) +\mu_{1}u_{1}(1-u_{1}-a_{1}u_{2}),\\ &\partial_{t} u_{2} = d_2\Delta u_{2}-\nabla\cdot(u_{2}\chi_{21}(v_{1})\nabla v_{1}) \\& \qquad -\nabla\cdot(u_{2}\chi_{22}(v_{2})\nabla v_{2}) +\mu_{2}u_{2}(1-u_{2}-a_{2}u_{1}), \\ &\partial_t v_1 = d_3\Delta v_{1}-\lambda_{1} v_{1}+h_1(u_{1}, u_{2}), \\ &\partial_t v_2 = d_4\Delta v_{2}-\lambda_{2} v_{2}+h_2(u_{1}, u_{2}) \\ \end{array} \right. \end{eqnarray*} $\end{document}is considered under the homogeneous Neumann boundary condition, where \begin{document}$ x\in\Omega, t>0 $\end{document} , \begin{document}$ \Omega\subset \mathbb{R}^{n} (n\leq 3) $\end{document} is a bounded domain with smooth boundary. For any regular nonnegative initial data, it is proved that if the parameters \begin{document}$ \mu_1, \mu_2 $\end{document} are sufficiently large, then the system possesses a unique and global classical solution for \begin{document}$ n\leq 3 $\end{document} . Specifically, when \begin{document}$ n = 2 $\end{document} , the global boundedness can be attained without any constraints on \begin{document}$ \mu_1, \mu_2 $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom