
The Mahler measure of $ (x+1/x)(y+1/y)(z+1/z)+\sqrt{k} $
Author(s) -
Cong-Yi Wang,
Xuejun Guo,
Hourong Qin
Publication year - 2020
Publication title -
electronic research archive
Language(s) - English
Resource type - Journals
ISSN - 2688-1594
DOI - 10.3934/era.2020007
Subject(s) - mathematics , combinatorics , arithmetic
In this paper we study the Mahler measures of reciprocal polynomials \begin{document}$ (x+1/x)(y+1/y)(z+1/z)+\sqrt{k} $\end{document} for \begin{document}$ k = 16 $\end{document} , \begin{document}$ k = -104\pm60\sqrt{3} $\end{document} , \begin{document}$ 4096 $\end{document} and \begin{document}$ k = -2024\pm765\sqrt{7} $\end{document} . We prove six conjectural identities proposed by Samart in [ 16 ].